Data Mining Classification: Basic Concepts and Techniques

Lecture Notes for Chapter 3

Introduction to Data Mining, 2nd Edition by Tan, Steinbach, Karpatne, Kumar

Classification: Definition

- Given a collection of records (training set)
 - Each record is by characterized by a tuple (*x*,*y*), where *x* is the attribute set and *y* is the class label
 - x: attribute, predictor, independent variable, input
 x: class, response, dependent variable, output
 - y: class, response, dependent variable, output
- Task:
 - Learn a model that maps each attribute set x into one of the predefined class labels y

Examples of Classification Task

Task	Attribute set, <i>x</i>	Class label, y
Categorizing email messages	Features extracted from email message header and content	spam or non-spam
Identifying tumor cells	Features extracted from x-rays or MRI scans	malignant or benign cells
Cataloging galaxies	Features extracted from telescope images	Elliptical, spiral, or irregular-shaped galaxies

General Approach for Building Classification Model

Figure 3.3. General framework for building a classification model.

Classification Techniques

Base Classifiers

- Decision Tree based Methods
- Rule-based Methods
- Nearest-neighbor
- Naïve Bayes and Bayesian Belief Networks
- Support Vector Machines
- Neural Networks, Deep Neural Nets
- Ensemble Classifiers
 - Boosting, Bagging, Random Forests

Example of a Decision Tree

Training Data

Model: Decision Tree

Test Data

Home	Marital	Annual	Defaulted
Owner	Status	Income	Borrower
No	Married	80K	?

Another Example of Decision Tree

There could be more than one tree that fits the same data!

Decision Tree Classification Task

Training SetTidAttrib1Attrib2Attrib3Class11NoSmall55K?12YesMedium80K?13YesLarge110K?14NoSmall95K?15NoLarge67K?	Tid 1 2 3 4 5 6 7 8 9 10	Attrib1 Yes No Yes No Yes No Yes No No No	Attrib2 Large Medium Small Medium Large Medium Large Small Medium Small	Attrib3 125K 100K 70K 120K 95K 60K 220K 85K 75K 90K	Class No No No Yes No Yes No Yes
12YesMedium80K?13YesLarge110K?14NoSmall95K?15NoLarge67K?	Tid 11	Attrib1	Attrib2	Attrib3	Class ?
	12 13 14 15	Yes Yes No No	Medium Large Small Large	80K 110K 95K 67K	? ? ?

Decision Tree Induction

- Many Algorithms:
 - Hunt's Algorithm (one of the earliest)
 - CART
 - ID3, C4.5
 - SLIQ,SPRINT

General Structure of Hunt's Algorithm

- Let D_t be the set of training records that reach a node t
- General Procedure:
 - If D_t contains records that belong the same class y_t, then t is a leaf node labeled as y_t
 - If D_t contains records that belong to more than one class, use an attribute test to split the data into smaller subsets. Recursively apply the procedure to each subset.

ID	Home Owner	Marital Annual Status Income		Defaulted Borrower	
1	Yes	Single	125K	No	
2	No	Married	100K	No	
3	No	Single	70K	No	
4	Yes	Married	120K	No	
5	No	Divorced	95K	Yes	
6	No	Married	60K	No	
7	Yes	Divorced	220K	No	
8	No	Single	85K	Yes	
9	No	Married	75K	No	
10	No	Single	90K	Yes	

ID	Home Owner	Marital Status	Annual Income	Defaulted Borrower
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Defaulted = No

(7,3)

(a)

Yes

No

No

No

8

9

10

85K

75K

90K

Yes

No

Yes

Single

Married

Single

(C)

Introduction to Data Mining, 2nd Edition

Design Issues of Decision Tree Induction

• How should training records be split?

- Method for expressing test condition
 - depending on attribute types
- Measure for evaluating the goodness of a test condition
- How should the splitting procedure stop?
 - Stop splitting if all the records belong to the same class or have identical attribute values
 - Early termination

Methods for Expressing Test Conditions

Depends on attribute types

- Binary
- Nominal
- Ordinal
- Continuous

Test Condition for Nominal Attributes

• Multi-way split:

 Use as many partitions as distinct values.

• Binary split:

Divides values into two subsets

Test Condition for Ordinal Attributes

• Multi-way split:

 Use as many partitions as distinct values

Binary split:

- Divides values into two subsets
- Preserve order
 property among
 attribute values

Introduction to Data Mining, 2nd Edition

Test Condition for Continuous Attributes

Splitting Based on Continuous Attributes

Different ways of handling

 Discretization to form an ordinal categorical attribute

Ranges can be found by equal interval bucketing, equal frequency bucketing (percentiles), or clustering.

- Static discretize once at the beginning
- Dynamic repeat at each node
- Binary Decision: (A < v) or $(A \ge v)$
 - consider all possible splits and finds the best cut
 - can be more compute intensive

How to determine the Best Split

	-			
Customer Id	Gender	Car Type	Shirt Size	Class
1	Μ	Family	Small	C0
2	Μ	Sports	Medium	CO
3	Μ	Sports	Medium	CO
4	Μ	Sports	Large	CO
5	Μ	Sports	Extra Large	CO
6	Μ	Sports	Extra Large	C0
7	\mathbf{F}	Sports	Small	CO
8	\mathbf{F}	Sports	Small	C0
9	\mathbf{F}	Sports	Medium	C0
10	\mathbf{F}	Luxury	Large	C0
11	Μ	Family	Large	C1
12	Μ	Family	Extra Large	C1
13	Μ	Family	Medium	C1
14	Μ	Luxury	Extra Large	C1
15	\mathbf{F}	Luxury	Small	C1
16	\mathbf{F}	Luxury	Small	C1
17	\mathbf{F}	Luxury	Medium	C1
18	\mathbf{F}	Luxury	Medium	C1
19	\mathbf{F}	Luxury	Medium	C1
20	F	Luxury	Large	C1

Before Splitting: 10 records of class 0, 10 records of class 1

Which test condition is the best?

How to determine the Best Split

- Greedy approach:
 - Nodes with purer class distribution are preferred
- Need a measure of node impurity:

C0: 9 C1: 1

High degree of impurity

Low degree of impurity

Measures of Node Impurity

Gini Index

Gini Index =
$$1 - \sum_{i=0}^{c-1} p_i(t)^2$$

Where $p_i(t)$ is the frequency of class *i* at node **t**, and *c* is the total number of classes

• Entropy

$$Entropy = -\sum_{i=0}^{c-1} p_i(t) \log_2 p_i(t)$$

Misclassification error

Classification error = $1 - \max[p_i(t)]$

c = 1

Finding the Best Split

- 1. Compute impurity measure (P) before splitting
- 2. Compute impurity measure (M) after splitting
 - Compute impurity measure of each child node
 - M is the weighted impurity of child nodes
- 3. Choose the attribute test condition that produces the highest gain

Gain = P - M

or equivalently, lowest impurity measure after splitting (M)